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J. Phys. A: Math. Gen. 15 (1982) L331-L336. Printed in Great Britain 

LETI’ER TO THE EDITOR 

In defence of the Dirac theory of constraints 

R L Schafir 
Department of Mathematics, King’s College, Strand, London WC2, UK 

Received 22 March 1982 

Abstract. An allegation of a flaw in the Dirac theory of constraints is denied. 

The theory developed by Dirac and others (for a particular account, see Dirac (1964)) 
for the Hamiltonian formulation of singular dynamical systems has been criticised by 
Shanmugadhasan (1973) on the grounds that it fails to take account of initial constraints 
in the Lagrangian formulation arising directly from the singularity of the Hessian. In 
a recent article in this journal, Ellis (1982) has repeated this claim, and incorporated 
the modifications suggested by Shanmugadhasan into the theory of a relativistic 
spinning particle. The purpose of this letter is to argue that, on the contrary, the 
Dirac theory is perfectly correct, and adequate as a Hamiltonian theory-but also 
that there is a gain to be had by looking at the structural features involved in the 
original Lagrangian picture, including those ‘canonical’ features necessary for the 
purpose of quantisation; it will be indicated how the controversy about first-class 
secondary constraints may be examined in this way. 

To deal with the question, it is necessary first to look briefly at different Lagrangian 
and Hamiltonian versions of the theory, and see how a similar ‘constraint algorithm’ 
arises in each. Consider an initial system of Euler-Lagrange equations. (For simplicity 
the treatment will be confined to autonomous systems.) The system may be written 

ci& = f i  (1) 

where aij is the Hessian a2L/&jidqj, and fi the remaining terms, namely dL/a4’- 

If cij is singular, this equation cannot be solved uniquely for $; there exist ‘kernels’ 
(a*L/aCyaq’)qi. 

Kh, say a = 1,. . . , m, such that 

K i  U V l J  ..=O (2) 

and the general solution of (1) is any particular solution, plus arbitrary multiples of 
the kernels. Geometrically, in the velocity space V (a local region of the tangent 
bundle), the system S is expressed by a system of ‘special’ vector fields, meaning 
vector fields of the form 

4ia/a4i + 4(4j, $)ala$ (3) 

S = M +  A”K, (4) 

(which represent second-order ordinary differential equations), and may be written 
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for some given special vector field M, with K, the vertical kernels, K, = Kh a / a q i ,  
and the A" = A"(q', 4 ' )  arbitrary multipliers. 

Constraints now may arise; for since certain combinations of the rows of oii are 
zero, namely Kbaii = 0, those same combinations of the right-hand side of (1) must 
also be zero: 

del 
X ,  = K h f i = O .  

Thus unless all the ,yo are already zero (which may be the case), the system has to lie 
on a certain 'constraint surface' in V, given by 

Secondary constraints in the theory arise from the imposition of the following 
extra condition: every vector field in the system S must be tangent to the constraint 
surface ,yo = 0 at the surface ,yo = 0; equivalently, every constraint function x,  must 
be a constant of every motion of S at the points of xu = 0: 

= 0. 

S(Xa) = 0 at X a  = 0. (6 )  
(This is the same idea, though not expressed in the same way, as Dirac's notion of a 
weak equation, so let us say that S(xo) is 'weakly equal' to zero, and write S(xo) = 0.) 

Writing out (6) explicitly 

and so if the matrix (axo/acji)Kg is non-singular, there is a unique solution for the 
A" ;  this means that out of the initial system S there is a final system consisting of just 
one special vector field which satisfies the tangency condition (6). However, more 
usually (aXo/a(ii)KB is singular, and it is then that secondary constraints may arise, 
and for the same reason as before: since for some m;, m;(ax0/aqi)KB = 0, then 

The procedure is then repeated, if necessary again and again, until either one has 
obtained more functionally independent constraint functions than there are dimensions 
of the space, or else at some stage no further constraints are added, and so there is 
a final constraint surface, and a final system of vector fields weakly tangent to that 
surface, with some of the A " solved, and some left free. 

The above picture may be termed the 'basic Lagrangian' picture: one starts off 
with an initial system 

S=M+AuKo,  X P  = o  (9) 
and the constraint algorithm is triggered automatically by the imposition of the extra 
condition (6) which is geometrically and physically necessary. 

Now for non-singular systems there is the following alternative description. The 
Euler-Lagrange equations, and the condition of speciality, are expressed by the 
equation 

M J w  = d H *  (or w,#* = H z ,  in index notation) (10) 

where M is the motion vector field, w the closed two-form, written in components as 

a2L/aq'a4' - a2L/aqiaqi -a2L/aqiaq) 
a2L/aqia& 0 

w = (  
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and 

H* = q'aL/aqi - L. (12) 
This is obtained by pulling back Hamilton's equations from the phase space by the 
Legendre transformation. One may write down the same equation for the singular 
case, and work out the resulting theory. This 'Hamiltonian theory in the Lagrangian 
picture', for singular dynamical systems, has been examined by Gotay and Nester 
(1979) (see also Gotay et a1 1978). If K, are the kernel vectors of w, the initial 
constraints are now given by 

Ka(H*) = 0. (13) 

S(K"(H*)) - 0 (14) 

Then the tangency condition is applied: 

and a constraint algorithm follows by the same reasoning as before. 
The two formulations are equivalent for the non-singular theory, but not for the 

singular. This is because S Jw = dH*,  as an equation for a system of vector fields S, 
admits solutions which are not special (cf equation (3)), while in the basic Lagrangian 
picture one confines oneself by definition to special vector fields. This causes extra 
constraints to occur in the basic Lagrangian theory, which are additional to those of 
the second theory, as we shall see. 

The third picture is Dirac's Hamiltonian theory. One passes over to the phase 
space P (a local region of the cotangent bundle) by means of the Legendre transfor- 
mation 

q i - , p i  def =aL/aq'. 
q'+qi ,  

This transformation is assumed singular, and so the image of V in P is a proper 
subspace, given by some constraint equations da(qi, p i )  = 0, known as the 'primary' 
constraints. (These constraints always occur, unlike the initial constraints of the 
previous two theories.) One then takes, as the 'primary' system of vector fields, the 
solutions of 

S J R = d H + A "  d4" (16) 

where R is the canonical two-form, and the A" arbitrary multipliers. As before, the 
tangency condition is imposed (S(4,) = 0), and again a constraint algorithm follows. 

We may now turn to the question: what do initial Lagrangian constraints correspond 
to in the Dirac theory? For the Hamiltonian theory in the Lagrangian picture, 
connected with equation (lo), they are the first of the secondary constraints. This 
follows from the work of Gotay and Nester (1979, $4). The demonstration is by 
showing that while the initial Lagrangian constraints are Ka(H*) = 0, the first of the 
secondary constraints in the Dirac theory are Kh (H) = 0, where K b  are the kernels 
of the closed two-form RI obtained by pulling R onto the primary constraint surface; 
and the K, push forward to Kb, while RI pulls back to w.  Thus the first of the 
secondary constraint functions pull back to the initial constraint functions, and the 
image of the initial constraint surface is the subsurface of the primary constraint 
surface obtained by adding to the primary constraints the first of the secondary 
constraints. 
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For the basic Lagrangian theory, the situation is complicated by the existence of 
extra constraints, caused by the restriction to special vector fields. What happens is 
illustrated by the two simple examples 

L=i(412-q12)+q2(i3, (17) 

(18) L = i(412 -q12 +q2432). 
For the second example (18), the initial constraint is 4 3 2  = 0, and corresponds to 
p3 = 0 in the Dirac theory, and this is the first of the secondary constraints. But in 
the first example (17), the initial constraints in the basic Lagrangian picture (the 
'first-order Lagrange equations' in the terminology of Shanmugadhasan and of Ellis) 
are (i2 = 0, (i3 = 0, and these do not correspond to anything in the Dirac theory, for 
(i2 and d3 cannot be expressed as functions of the q', pi. The image of the surface 
in velocity space (i2=0, (i3=0, is the same primary constraint surface, as is the 
image of the velocity space itself, as the reader may verify. 

The reason for the discrepancy is that for (17) the equation SJw = d H *  admits 
the non-special solution qla/aql - qla/aql, and if this is deemed acceptable, then 
there are no non-trivial initial constraints at all for this system. 

It will now be shown that the results of these examples typify what happens in the 
general situation. First, let us find a criterion which says when a first-order Lagrange 
equation is also an initial constraint in the theory of SJw = dH*. Now a kernel K of 
w which gives rise to a non-trivial initial constraint K ( H * )  = 0 (13) can not be a 
vertical kernel Kia/aqi,  with K '  a kernel of the Hessian a2L/aq'aqi, since for such 
kernels K (H*)  = Ki(a/a$)(4'aL/a4' - L )  = 0 ;  non-trivial constraints must arise 
from non-vertical kernels of w.  By examining the form of w (ll),  one may see that 
any non-vertical kernel must be of the form 

K'  = Kia/aq' +kia/aqi (19) 

k'a2L/aqia(i' = K'(a2L/aqiaqf - a2L/agiaq') 

where K' is a kernel of the Hessian, and k i  a solution of 

(20) 

whenever solutions of this equation exist. 
The condition that solutions should exist is, clearly, 

where Kh are all the other kernels of the Hessian. 
When solutions exist, one may see further, from (11)  and (12), that the initial 

constraint function associated with K',  namely K'(H*) ,  and the first-order Lagrange 
expression (initial constraint function of the basic Lagrangian theory), namely 
K'(aL/aq' -(a2L/a&aq')4'), are the same. Thus every initial constraint of the theory 
of SJw = d H *  is a first-order Lagrange equation, and, as before, corresponds to one 
of the first of the secondary constraints. It remains to examine the case of a first-order 
Lagrange equation which is not an initial constraint of SJw = dH*,  because (21) does 
not hold. 

Lemma 1. Let f be a (sufficiently smooth) mapping A B, where A and B are 
regions of real number spaces, and let I be a submanifold of A. Then f ( I ) = f ( A )  
( = B )  if and only if no constraint functions which express I are the pullbacks of any 
functions on B. 
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Proof. If f(I) is a proper subset of B, let it be expressed by constraint functions #, = 0, 
say. Then 4: = 0, i.e. 4: are constraint functions for I. Hence if constraint functions 
for I are not pullbacks, f ( I )  is not a proper subset of B. 

Conversely, if constraint functions for I are pullbacks of #a say, then 4: = O  
implies that #a = 0 on f ( I ) ,  and so f(1) is a surface in B; hence if f ( I )  is not a surface 
in B, then I cannot be expressed by constraints of the form 4; = 0. 

Lemma 2. The kernels of the Hessian, Kh, and the primary constraints #,(qi, pi) = 0, 
are connected by 

Proof. Pull back the #, to the velocity space V, where they become identities 
#,(qi, aL/aq') = 0, Vq', 4'. (22) and (23) then follow by differentiation, first with 
respect to 4', then with respect to q'. 

Lemma 3. The functions 4' and aL/aq' (though not pullbacks) may be expressed in 
terms of parametrised sets of pullbacks by 

The proof of this is to be found in Dirac (1964), where it is part of the argument 
leading to the setting up of the primary system ((16) above); the method is to consider 
the variation of H *  on the inverse image of a point (q', pi) of P. 

Consider the constraint function of a first-order Lagrange expression # = 
def 

Kl(aL/aq' - (a2~/a4 'a494j)  (cf ( 5 ) ) .  BY (24) this is K'[-aH/aqi -h"a#,/aq' - 
(api/aq')(aH/apj +A"a#,/api)] which by (22) and (23) becomes 

[#, ~ ] + ~ " ~ ' ~ h ( a p ~ / a q ' - a p ~ / a q ' )  (25) 
where the first term is the Poisson bracket. Thus # is the pullback of a well defined 
function just when K'KL (api/aqi -apj/aq') = 0, and this is the condition (21) that # 
be an initial constraint in the second Lagrangian theory, and hence a first of the 
secondary constraints in the Dirac theory. If (21) does not hold, # is not the pullback 
of any function on P, and so by lemma 1 # = 0 is 'ignorable', for the image of a 
surface where 4 = 0 is one of the constraints, is the same as if that constraint was 
simply omitted. 

Thus the claim is incorrect that in addition to the primary constraints further 
constraints on the canonical variables need to be added, and that these constraints 
cannot be obtained using the Dirac theory. The first-order Lagrange equations are 
either the first of the secondary constraints, or else they disappear under the Legendre 
transformation, and nothing corresponding to them can be added even in principle. 

The above illustrates the difficulties of interpretation of a singular theory when 
cast in terms of the phase space variables. In describing a physical system, it is the 
'positions' and 'velocities' of the Lagrangian picture which correspond to the basic 
conceptual objects; the points of phase space are much more a mathematical invention. 
For non-singular systems this does not really matter, since any results written in terms 
of phase space variables can be translated back unambiguously into velocity space 
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variables. But the same is not true for singular systems, and this fact must lend a 
somewhat ethereal air to some of the questions and controversies in the Dirac theory, 
unless they can be translated back into Lagrangian terms. A celebrated question is 
Dirac’s conjecture that the first-class secondary constraints should be added to the 
Hamiltonian for the final system (Dirac 1964). The author will suggest elsewhere 
(Schafir 1982) that what this corresponds to in the basic Lagrangian picture is complet- 
ing the final system to a Lie algebra, by adding further kernels which are if necessary 
non-vertical. (The effect is to go some of the way, though not all of the way, to the 
theory of S J w  = dH*.) The solutions then form a foliation of subsurfaces (one surface 
through each point) of the final constraint surface, analogous to the flow of curves 
which represents the motion of a non-singular system. This allows a straightforward 
generalisation of the relation between infinitesimal invariances and constants of the 
motion, and it is possible to define a Poisson bracket between just those quantities 
whose rate of change is the same along every vector field of the final system. 

The conclusion is the one which was perhaps inevitable from the start: Dirac got 
it right, even if there are aspects of his reasoning which are not readily transparent. 
However, it is arguable that the theory can be expressed better in velocity space 
terms than in phase space. The motivation for establishing a phase space formulation 
was what was seen as the necessity of the Hamiltonian structures for the quantisation 
of the system. But one may distinguish here between Hamiltonian theory, whose 
necessity one indeed accepts, and the Hamiltonian phase space of positions and 
momenta. With a symplectic structure on the final constraint surface, and Poisson 
brackets defined for precisely those variables whose rate of change is uniquely defined, 
one has the standard ingredients for passage to quantum theory, but with everything 
still defined in terms of the positions and the velocities. 

I would like to thank P J Maher and F A E Pirani for helpful comments over a 
preliminary draft, and D J R Lloyd-Evans for drawing my attention to the paper of 
Gotay, Nester and Hinds. 
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